Lab Canada

Five nanotechnology research projects share $15M funding

Ottawa, ON – The winners of a special $15-million nanotechnology research funding competition have been named. Five projects will be funded over three years, and each will receive $3 million in funding, with financial support shared by the National Research Council (NRC) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

The five winning teams combine the expertise of NRC researchers from several disciplines with collaborators from 14 academic institutions: Concordia University, Ecole Polytechnique de Montreal, McGill University, Queen’s University, Simon Fraser University, Universite Laval, Universite de Sherbrooke, University of Alberta and Concordia University College of Alberta, University of British Columbia, University of Ottawa, University of Toronto, University of Victoria and University of Waterloo. Each research team has also secured industry support.

Two winning teams will develop solar cells that are significantly more efficient and less expensive than existing technologies. One will create solar cells that incorporate “quantum dots,” artificial atoms on crystalline semiconductor surfaces. The other will enhance solar cell efficiency through novel polymeric nano-composite semiconductor materials.

Another team plans to develop quantum cryptography, a technology based on quantum light theory that could pave the way to the ultimate security solution for information processing and data protection.

A fourth winning team will develop laser-based instrumentation to characterize nano-aerosols, known to worsen air quality and cause cardiovascular, respiratory, and allergic distress. Currently there is no real-time instrumentation to measure the size, concentration, and composition of nano-aerosols, or to assess their impact. And the fifth team will develop strong and lightweight nanocomposite materials for the transportation, construction and packaging industries.

The winning projects are as follows:

Each winning project will be conducted by a team of NRC and academic researchers, and will have participation from a Canadian-based industrial partner intent on exploiting the resulting nanotechnology. Project summaries follow.

(1) SUNRISE: Semiconductors Using Nanostructures for Record Increases in Solar-Cell Efficiency

Context: Solar cells are not yet widely used because they are not sufficiently efficient or cost-effective as a primary source of electricity in homes and businesses. The proposed research will develop a new class of solar cells up to 10% more efficient, potentially making solar cells attractive for widespread use.

Objectives: Optimize a design for solar cells using quantum dots on crystalline semiconductor surfaces, which will absorb sunlight far more efficiently than existing solar cell technology. Integrate the optimized solar cells into a concentrator to boost solar intensity up to 500 times, and measure the performance of the integrated assembly in real-world conditions. Provide receptor companies with a marketable technology.

Team: Researchers from the Universite de Sherbrooke and the University of Ottawa will work with scientists and engineers from the NRC Institute for Microstructural Sciences (NRC-IMS) and the NRC Institute for Research in Construction (NRC-IRC), in Ottawa.

(2) Polymeric/inorganic semiconductor nano-composite materials for low cost photovoltaic applications

Context: Despite progress in increasing cell power conversion efficiency, the organic photovoltaic (PV) industry is still in its infancy, and the power conversion efficiency is too low for market entry. If solar energy is to compete with fossil fuels as a major source of energy, the cost per watt must be dramatically reduced. Polymer-based photovoltaic technology is promising for producing low-cost solar cells. Significant research in materials development will help to overcome critical issues related to the required properties of organic semiconductor materials.

Objectives: Increase solar cell conversion efficiency and affordability by developing polymer and inorganic semiconductor nano-composite materials with novel absorption properties. PV systems built on this technology will accelerate the adoption of solar power systems by enhancing the return on investment for the end-user, relative to other PV technologies.

Team: Researchers from Universite de Laval, Queen’s University, the University of Toronto and Simon Fraser University will work with scientists and engineers from the NRC Institute for Microstructural Sciences (NRC-IMS), the NRC Institute for Chemical Process and Environmental Technology (NRC-ICPET) and the NRC Steacie Institute for Molecular Sciences (NRC-SIMS) in Ottawa.

(3) Nanostructured Single and Entangled Photon Sources for Quantum Information Processing

Context: Quantum light theory has opened the route toward quantum cryptography and quantum computers using single photons. Quantum cryptography will guarantee secure communication, and quantum computers will be able to solve certain problems exponentially faster than any classical computer.

Objectives: Engineer optoelectronic nanostructures so that they can emit single photons or specialized photon pairs in which the photons are “tied together” so that influences to one photon can be immediately detected by its partner, even on the opposite side of the world. Develop a commercially viable technology for the production of single and entangled photon sources, stimulating the creation of new Canadian companies that will focus on systems for completely secure communications for data protection.

Team: Researchers from Queen’s University, the University of Waterloo, the University of Victoria and the University of British Columbia will work with scientists and engineers from the NRC Institute for Microstructural Sciences (NRC-IMS) and the NRC Institute for National Measurement Standards (NRC-INMS), in Ottawa.

(4) Instrumentation for real-time chemical and physical characterization of nano-aerosols

Context: Airborne nanoparticles (nano-aerosols) contribute to poor air quality and climate change and cause cardiovascular, respiratory, and allergic distress. Nano-aerosols are ultrafine particulates, with sizes measured in nanometres. Current instrumentation can measure fine particulates, greater than 2.5 microns, but no instrumentation exists to monitor, measure and characterize aerosol nanoparticles. The properties that need to be measured to assess the impacts of nano-aerosols are the physical and chemical characteristics, such as size, concentration, and composition.

Objectives: Exploit the latest in laser technology to develop and demonstrate instrumentation capable of characterizing the formation, composition, and distribution of nano-aerosols. Characterize the full range of nano-particles emitted by the combustion of hydrocarbon fuels and demonstrate the usefulness of such a technology which, after commercialization, will become available to other researchers and industries.

Team: Researchers from the University of Waterloo, the University of Alberta, Concordia College (Alberta), and the University of British Columbia will work with scientists and engineers from the NRC Institute for Chemical Process and Environmental Technology (NRC-ICPET), the NRC Institute for Microstructural Sciences (NRC-IMS), and the NRC Steacie Institute for Molecular Sciences (NRC-SIMS) in Ottawa.

(5) Polyester Nanocomposites for Greener Transportation, Construction and Packaging Applications

Context: Polymer nanocomposites (PNCs) are materials composed of a polymer matrix with nanometer-size particles dispersed in it. The nanoparticles increase the stiffness, strength, barrier properties and heat resistance of the materials without making them heavier or more transparent. These advantages make PNCs ideal for use in the transportation, construction and packaging industries.

Objectives: Develop advanced approaches to incorporate cost-effective nano-size reinforcements, like nat
ural and synthetic clays, into synthetic and bio-based polyester resins (both thermoset and thermoplastic). As part of this work, the team intends to develop enhanced nanocomposite products that would improve industrial manufacturing efficiency, and transfer this technology to industry.

Team: Researchers from the Ecole Polytechnique, McGill University, Concordia, and the University of Toronto will be working with scientists and engineers from the NRC Industrial Materials Institute (NRC-IMI) in Boucherville, Quebec.